6 research outputs found

    Global burden of colistin-resistant bacteria : mobilized colistin resistance genes study (1980-2018)

    Get PDF
    Colistin is considered to be an antimicrobial of last-resort for the treatment of multidrug-resistant Gram-negative bacterial infections. The recent global dissemination of mobilized colistin resistance (mcr) genes is an urgent public health threat. An accurate estimate of the global prevalence of mcr genes, their reservoirs and the potential pathways for human transmission are required to implement control and prevention strategies, yet such data are lacking. Publications from four English (PubMed, Scopus, the Cochrane Database of Systematic Reviews and Web of Science) and two Chinese (CNKI and WANFANG) databases published between 18 November 2015 and 30 December 2018 were identified. In this systematic review and meta-analysis, the prevalence of mcr genes in bacteria isolated from humans, animals, the environment and food products were investigated. A total of 974 publications were identified. 202 observational studies were included in the systematic review and 71 in the meta-analysis. mcr genes were reported from 47 countries across six continents and the overall average prevalence was 4.7% (0.1-9.3%). China reported the highest number of mcr-positive strains. Pathogenic Escherichia coli (54%), isolated from animals (52%) and harboring an IncI2 plasmid (34%) were the bacteria with highest prevalence of mcr genes. The estimated prevalence of mcr-1 pathogenic E. coli was higher in food-animals than in humans and food products, which suggests a role for foodborne transmission. This study provides a comprehensive assessment of prevalence of the mcr gene by source, organism, genotype and type of plasmid

    Assessing the Prevalence and Potential Risks of Salmonella Infection Associated with Fresh Salad Vegetable Consumption in the United Arab Emirates

    Get PDF
    This study aimed to investigate the occurrence and characteristics of Salmonella isolates in salad vegetables in the United Arab Emirates (UAE). Out of 400 samples tested from retail, only 1.25% (95% confidence interval, 0.41–2.89) were found to be positive for Salmonella, all of which were from conventional local produce, presented at ambient temperature, and featured as loose items. The five Salmonella-positive samples were arugula (n = 3), dill (n = 1), and spinach (n = 1). The Salmonella isolates from the five samples were found to be pan-susceptible to a panel of 12 antimicrobials tested using a disc diffusion assay. Based on whole-genome sequencing (WGS) analysis, only two antimicrobial resistance genes were detected—one conferring resistance to aminoglycosides (aac(6′)-Iaa) and the other to fosfomycin (fosA7). WGS enabled the analysis of virulence determinants of the recovered Salmonella isolates from salad vegetables, revealing a range from 152 to 165 genes, collectively grouped under five categories, including secretion system, fimbrial adherence determinants, macrophage-inducible genes, magnesium uptake, and non-fimbrial adherence determinants. All isolates were found to possess genes associated with the type III secretion system (TTSS), encoded by Salmonella pathogenicity island-1 (SPI-1), but various genes associated with the second type III secretion system (TTSS-2), encoded by SPI-2, were absent in all isolates. Combining the mean prevalence of Salmonella with information regarding consumption in the UAE, an exposure of 0.0131 salmonellae consumed per person per day through transmission via salad vegetables was calculated. This exposure was used as an input in a beta-Poisson dose–response model, which estimated that there would be 10,584 cases of the Salmonella infection annually for the entire UAE population. In conclusion, salad vegetables sold in the UAE are generally safe for consumption regarding Salmonella occurrence, but occasional contamination is possible. The results of this study may be used for the future development of risk-based food safety surveillance systems in the UAE and to elaborate on the importance for producers, retailers, and consumers to follow good hygiene practices, particularly for raw food items such as leafy salad greens

    Whole-genome sequencing of Listeria innocua recovered from retail milk and dairy products in Egypt

    Get PDF
    The similarity of the Listeria innocua genome with Listeria monocytogenes and their presence in the same niche may facilitate gene transfer between them. A better understanding of the mechanisms responsible for bacterial virulence requires an in-depth knowledge of the genetic characteristics of these bacteria. In this context, draft whole genome sequences were completed on five L. innocua isolated from milk and dairy products in Egypt. The assembled sequences were screened for antimicrobial resistance and virulence genes, plasmid replicons and multilocus sequence types (MLST); phylogenetic analysis of the sequenced isolates was also performed. The sequencing results revealed the presence of only one antimicrobial resistance gene, fosX, in the L. innocua isolates. However, the five isolates carried 13 virulence genes involved in adhesion, invasion, surface protein anchoring, peptidoglycan degradation, intracellular survival, and heat stress; all five lacked the Listeria Pathogenicity Island 1 (LIPI-1) genes. MLST assigned these five isolates into the same sequence type (ST), ST-1085; however, single nucleotide polymorphism (SNP)-based phylogenetic analysis revealed 422–1,091 SNP differences between our isolates and global lineages of L. innocua. The five isolates possessed an ATP-dependent protease (clpL) gene, which mediates heat resistance, on a rep25 type plasmids. Blast analysis of clpL-carrying plasmid contigs showed approximately 99% sequence similarity to the corresponding parts of plasmids of L. monocytogenes strains 2015TE24968 and N1-011A previously isolated from Italy and the United States, respectively. Although this plasmid has been linked to L. monocytogenes that was responsible for a serious outbreak, this is the first report of L. innocua containing clpL-carrying plasmids. Various genetic mechanisms of virulence transfer among Listeria species and other genera could raise the possibility of the evolution of virulent strains of L. innocua. Such strains could challenge processing and preservation protocols and pose health risks from dairy products. Ongoing genomic research is necessary to identify these alarming genetic changes and develop preventive and control measures

    Characterization of Multidrug Resistance Patterns of Emerging Salmonella enterica Serovar Rissen along the Food Chain in China

    No full text
    Salmonella spp. are recognized as important foodborne pathogens globally. Salmonella enterica serovar Rissen is one of the important Salmonella serovars linked with swine products in numerous countries and can transmit to humans by food chain contamination. Worldwide emerging S. Rissen is considered as one of the most common pathogens to cause human salmonellosis. The objective of this study was to determine the antimicrobial resistance properties and patterns of Salmonella Rissen isolates obtained from humans, animals, animal-derived food products, and the environment in China. Between 2016 and 2019, a total of 311 S. Rissen isolates from different provinces or province-level cities in China were included here. Bacterial isolates were characterized by serotyping and antimicrobial susceptibility testing. Minimum inhibitory concentration (MIC) values of 14 clinically relevant antimicrobials were obtained by broth microdilution method. S. Rissen isolates from humans were found dominant (67%; 208/311). S. Rissen isolates obtained from human patients were mostly found with diarrhea. Other S. Rissen isolates were acquired from food (22%; 69/311), animals (8%; 25/311), and the environment (3%; 9/311). Most of the isolates were resistant to tetracycline, trimethoprim-sulfamethoxazole, chloramphenicol, streptomycin, sulfisoxazole, and ampicillin. The S. Rissen isolates showed susceptibility against ceftriaxone, ceftiofur, gentamicin, nalidixic acid, ciprofloxacin, and azithromycin. In total, 92% of the S. Rissen isolates were multidrug-resistant and ASSuT (27%), ACT (25%), ACSSuT (22%), ACSSuTAmc (11%), and ACSSuTFox (7%) patterns were among the most prevalent antibiotic resistance patterns found in this study. The widespread dissemination of antimicrobial resistance could have emerged from misuse of antimicrobial agents in animal husbandry in China. These findings could be useful for rational antimicrobial usage against Salmonella Rissen infections

    Epidemiological and Genomic Characterization of Campylobacter jejuni Isolates from a Foodborne Outbreak at Hangzhou, China

    No full text
    Background: Foodborne outbreaks caused by Campylobacter jejuni have become a significant public health problem worldwide. Applying genomic sequencing as a routine part of foodborne outbreak investigation remains in its infancy in China. We applied both traditional PFGE profiling and genomic investigation to understand the cause of a foodborne outbreak in Hangzhou in December 2018. Method: A total of 43 fecal samples, including 27 sick patients and 16 canteen employees from a high school in Hangzhou city in Zhejiang province, were recruited. Routine real-time fluorescent PCR assays were used for scanning the potential infectious agents, including viral pathogens (norovirus, rotavirus, adenovirus, and astrovirus), and bacterial pathogens (Salmonella, Shigella, Campylobacter jejuni, Vibrio parahaemolyticus and Vibrio cholerae). Bacterial selection medium was used to isolate and identify the positive bacteria identified by molecular test. Pulsed field gel electrophoresis (PFGE), and next generation sequencing (NGS) were applied to fifteen recovered C. jejuni isolates to further understand the case linkage of this particular outbreak. Additionally, we retrieved reference genomes from the NCBI database and performed a comparative genomics analysis with the examined genomes produced in this study. Results: The analyzed samples were found to be negative for the queried viruses. Additionally, Salmonella, Shigella, Vibrio parahaemolyticus and Vibrio cholera were not detected. Fifteen C. jejuni strains were identified by the real-time PCR assay and bacterial selection medium. These C. jejuni strains were classified into two genetic profiles defined by the PFGE. Out of fifteen C. jejuni strains, fourteen have a unified consistent genotype belonging to ST2988, and the other strain belongs to ST8149, with a 66.7% similarity in comparison with the rest of the strains. Moreover, all fifteen strains harbored blaOXA-61 and tet(O), in addition to a chromosomal mutation in gyrA (T86I). The examined fourteen strains of ST2988 from CC354 clone group have very minimal genetic difference (3~66 SNPs), demonstrated by the phylogenomic investigation. Conclusion: Both genomic investigation and PFGE profiling confirmed that C. jejuni ST2988, a new derivative from CC354, was responsible for the foodborne outbreak Illustrated in this study
    corecore